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Abstract. The spatial distribution of persistent spins at zero temperature in the pure two-
dimensional Ising model is investigated numerically. A persistence correlation length, ξ(t) ∼ tZ ,
is identified such that for length scales r � ξ(t) the persistent spins form a fractal with dimension
df ; for length scales r � ξ(t) the distribution of persistent spins is homogeneous. The zero-
temperature persistence exponent, θ , is found to satisfy the scaling relation θ = Z(2 − df ) with
θ = 0.209 ± 0.002 of Jain (Jain S 1999 Phys. Rev. E 59 R2493), Z = 1/2 and df ∼ 1.58.

The ‘persistence’ problem has attracted considerable interest in recent years [1–9]. In its most
general form, it is concerned with the fraction of space which persists in its initial state up to
some later time.

Hence, in the non-equilibrium dynamics of spin systems at zero temperature we are
interested in the fraction of spins, P(t), that persist in the same state as at t = 0 up to
some later time t . For the pure ferromagnetic two-dimensional Ising model, P(t) has been
found to decay algebraically [1–4]

P(t) ∼ t−θ (1)

where θ = 0.209 ± 0.002 [5]. Similar algebraic decay has been found in numerous other
systems displaying persistence [9]. Most of the recent theoretical effort has gone into obtaining
the numerical value of θ for different models.

Very recently, Manoj and Ray [10] have studied the spatial correlation of persistent sites
in the 1D A + A → 0 model. They found that the set of persistent sites in their 1D model
forms a fractal over sufficiently small length scales.

In this paper we present the results of an extensive numerical study of the spatial
distribution of persistent spins in the pure 2D Ising model at zero temperature. As we will see,
the 2D Ising model exhibits behaviour very similar to that found by Manoj and Ray [10] in
their simple 1D model.

The Hamiltonian for our model is given by

H = −
∑
〈ij〉

SiSj (2)

where Si = ±1 are Ising spins situated on every site of a square lattice with periodic boundary
conditions; the summation in equation (2) runs over all nearest-neighbour pairs only.

The data presented in this paper were obtained for a lattice with dimensions 1000 × 1000
(=N).
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Figure 1. A plot of the scaling function f (x) (=C(r, t)/P (t)) against x where x = r/
√

t for t

ranging over approximately three orders of magnitude.

Each simulation run begins at t = 0 with a random (±1) starting configuration of the spins
and then we update the lattice via single-spin-flip zero-temperature Glauber dynamics [5]. The
rule we use is: always flip if the energy change is negative, never flip if the energy change is
positive and flip at random if the energy change is zero.

For each spin Si we define

ni(t) = (Si(t)Si(0) + 1)/2. (3)

Hence, ni(0) = 1 for all i. Furthermore, ni(t) changes from 1 to 0 at the first flip of Si and,
in the simulations, remains at this value even if Si undergoes subsequent flips. The spin Si is
said to be persistent if and only if ni(t) = 1 for all t � 0.

The total number, n(t), of spins which have never flipped until time t is then given by
n(t) = ∑

i ni(t), and the persistence probability by [1]

P(t) =
∑

i

〈ni(t)〉/N (4)

where 〈· · ·〉 indicates averages over different initial conditions and histories. We averaged over
at least 100 different initial conditions and histories for each run.

To investigate the spatial correlations in this model, we follow Manoj and Ray [10] and
study the two-point correlator defined by

C(r, t) = 〈ni(t)ni+r (t)〉/〈ni(t)〉 (5)

where 〈· · ·〉 now also includes the average over the lattice shown explicitly in equation (4).
C(r, t) is simply the probability that a spin at site i + r is persistent given that the one at site
i is persistent, averaged over the entire lattice. As we are working with a square lattice, we
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Figure 2. A re-plot of the data shown in figure 1 on a log–log scale. The straight line implies a
value of α = 0.428 ± 0.007.

estimated ni+r by considering spins displaced along the x and y directions from i. According
to [10], the two-point correlator satisfies the following dynamic scaling relation:

C(r, t) = P(t)f (r/ξ(t)) (6)

where ξ(t) is the persistence correlation length and f (x) is a scaling function such that

f (x) ∼
{

x−α for x � 1

1 for x � 1.
(7)

As P(t) ∼ t−θ , for the two-point correlator to be independent of t for r � ξ(t) we require
ξ−α ∼ t−θ . As a consequence, the expected behaviour of C(r, t) in the two limits is given by

C(r, t) ∼
{

r−α for r � ξ(t)

t−θ for r � ξ(t).
(8)

Assuming a power-law divergence for the persistence correlation length with t , i.e. ξ(t) ∼ tZ ,
then leads to the scaling relation Zα = θ . As we are working with the pure 2D Ising model
at zero temperature, we expect [11] Z = 1/2; our results are completely consistent with this
assumption.

To examine the correlated region (r � ξ(t)) we study the average number of persistent
spins, n(l, t), in square grids with dimensions l × l containing at least one such persistent spin.
As

n(l, t) ≈
∫ l

0
C(r, t)r dr (9)

we have that

n(l, t) ∼
{

l2−α for l � ξ(t)

l2P(t) for l � ξ(t).
(10)
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Figure 3. A log–log plot of n(l, t) against l. Here, n(l, t) is the average number of persistent spins
in a square (l × l) grid containing at least one persistent spin at time t . The data are shown for
(top) t = 102 ♦, 103 +, 5 × 103 � and 104 × (bottom). There is a clear crossover at l ≈ √

t from
a fractal distribution with dimension df ∼ 1.58 to a homogeneous one with df = d = 2. The two
straight lines (with slopes 1.58 and 2.00) are fits of the data in the two extreme cases for t = 104.

Hence, we expect the persistent spins to form a fractal with dimension df = 2 − α for length
scales l � ξ(t); the distribution is homogeneous on longer length scales, namely for l � ξ(t).
We expect the crossover to occur at l ≈ ξ(t) ∼ t1/2. The scaling form for n(l, t) is given by

n(l, t) = l2P(t)g(l/ξ(t)) (11)

where g(x) is a scaling function satisfying

g(x) ∼
{

x−α for x � 1

1 for x � 1.
(12)

We now discuss our results.
Figure 1 shows a plot of the scaling function f (x) (=C(r, t)/P (t)) against x = r/ξ(t)

for various different values of t . We have assumed that ξ(t) ∼ t1/2. The data in figure 1 range
over almost three orders of magnitude and are clearly consistent with this assumption. The
large-x behaviour of f (x) clearly follows the expected behaviour given in equation (7).

To extract a value for α we re-plot the data shown in figure 1 on a log–log scale in figure 2.
The algebraic behaviour for x � 1 of the scaling function is confirmed by the linear fit. The
slope of the straight line implies a value of α = 0.428 ± 0.007. Hence, the scaling relation
would suggest that θ = Zα = 0.214 ± 0.004. This is, of course, consistent with the value
(0.209 ± 0.002) quoted above for θ [5].

We investigate the correlated regions by obtaining a direct estimate of the fractal dimension
df . This is undertaken by first partitioning the lattice into square grids of size l×l with l ranging
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Figure 4. A plot of ln g(x) against ln x = ln(l/ξ(t)). Here the scaling function g(x) =
n(l, t)/ l2P(t). The straight line has slope = −0.50 and implies a value of α ∼ 0.50. Fitting
the data over the same range as in figure 3 leads to α ∼ 0.438.

from 4 to 250. The average number of persistent spins in each l × l square containing at least
one persistent spin is then obtained.

In figure 3 we plot ln n(l, t) versus ln l for t = 102, 103, 5 × 103 and 104. We notice that,
for each of the values of t , the behaviour over sufficiently small (typically, l � √

t) length
scales is consistent with a fractal dimension df = 2 − α ∼ 1.58; over longer length scales
(typically, l � √

t) we retrieve homogeneous behaviour (df = d = 2). Actual values of df

range from df(t = 102) ∼ 1.62 to df(t = 104) ∼ 1.58. The straight lines, with slopes 1.58
and 2.00, shown in figure 3 are linear fits to the behaviour in the two respective regimes for
t = 104.

We obtain an independent estimate for the exponent α by re-plotting the data for
t = 5 × 103 and 104 in scaling form. Figure 4 shows a log–log plot of the scaling function
g(x) = n(l, t)/ l2P(t) against x where x = l/

√
t . We see that the data clearly fall onto a

single scaling curve consistent with the expected behaviour given in equation (12). On fitting
all of the data for ln x < −0.5 we obtain a value of α ∼ 0.438. However, restricting the
linear fit to ln x < −1, as indicated by the straight line in figure 4, would imply a value of
α ∼ 0.50. This value of α is slightly higher than the one we obtained from the analysis of the
scaling behaviour of the two-point correlator (see equation (8)) and is a direct consequence
of the restricted fit. It is emphasized that fitting the data over the same range as in figure 3
results in the lower value (α ∼ 0.438), which is clearly consistent with our result for the fractal
dimension in the correlated regime.

To conclude, we have investigated the spatial distribution of persistent spins at zero
temperature in the pure two-dimensional Ising model. We find that the persistent spins form
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a fractal with dimension df ∼ 1.58 for length scales r � ξ(t), where ξ(t) ∼ tZ is the
persistence correlation length. Furthermore, the persistence exponent satisfies the scaling
relation θ = Z(2 − df) with Z = 1/2.
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